How to Find a Tangent Line to a Curve

104 37
    • 1). Write down the equation of the function that defines the curve, in the form y = f(x). For example, use y = x^2 + 3.

    • 2). Rewrite each term of the function, changing each term of the form ax^b to a*b*x^(b-1). If a term has no x value, remove it from the rewritten function. This is the derivative function of the original curve. For the example function, the calculated derivative function f'(x) is f'(x) = 2*x.

    • 3). Find the value on the horizontal axis or x value of the point of the curve you want to calculate the tangent for and replace x on the derivative function by that value. To calculate the tangent of the example function at the point where x = 2, the resulting value would be f'(2) = 2*2 = 4. This is the slope of the tangent to the curve at that point.

    • 4). Calculate the function for the tangent line using the equation for a straight line -- f(x) = a*x + c. Replace a with the calculated tangent slope and c with the value of any term on the original function that had no x values. In the example, the tangent line equation of y = x^2 + 3 at the point where x = 2 would be y = 4x + 3.

    • 5). Draw the tangent line to the curve if required. Calculate the value of the tangent function for a second value of x such as x + 1 and draw a line between the tangent point and the second calculated point. Using the example, calculate y for x=3 obtaining y = 4*3 + 3 = 15. The straight line that passes the points (11, 2) and (15, 3) is the mathematical tangent to the curve.

Source...
Subscribe to our newsletter
Sign up here to get the latest news, updates and special offers delivered directly to your inbox.
You can unsubscribe at any time

Leave A Reply

Your email address will not be published.